Discovering partial periodic-frequent patterns in a transactional database

نویسندگان

  • R. Uday Kiran
  • J. N. Venkatesh
  • Masashi Toyoda
  • Masaru Kitsuregawa
  • P. Krishna Reddy
چکیده

Time and frequency are two important dimensions to determine the interestingness of a pattern in a database. Periodic-frequent patterns are an important class of regularities that exist in a database with respect to these two dimensions. Current studies on periodic-frequent pattern mining have focused on discovering full periodic-frequent patterns, i.e., finding all frequent patterns that have exhibited complete cyclic repetitions in a database. However, partial periodic-frequent patterns are more common due to the imperfect nature of real-world. This paper proposes a flexible and generic model to find partial periodicfrequent patterns. A new interesting measure, periodic-ratio , has been introduced to determine the periodic interestingness of a frequent pattern by taking into account its proportion of cyclic repetitions in a database. The proposed patterns do not satisfy the anti-monotonic property. A novel pruning technique has been introduced to reduce the search space effectively. A pattern-growth algorithm to find all partial periodic-frequent patterns has also been presented in this paper. Experimental results demonstrate that the proposed model can discover useful information, and the algorithm is efficient. © 2016 Published by Elsevier Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovering Chronic-Frequent Patterns in Transactional Databases

This paper investigates the partial periodic behavior of the frequent patterns in a transactional database, and introduces a new class of user-interest-based patterns known as chronic-frequent patterns. Informally, a frequent pattern is said to be chronic if it has sufficient number of cyclic repetitions in a database. The proposed patterns can provide useful information to the users in many re...

متن کامل

Discovering Periodic-Frequent Patterns in Transactional Databases

Since mining frequent patterns from transactional databases involves an exponential mining space and generates a huge number of patterns, efficient discovery of user-interest-based frequent pattern set becomes the first priority for a mining algorithm. In many real-world scenarios it is often sufficient to mine a small interesting representative subset of frequent patterns. Temporal periodicity...

متن کامل

Discovering Quasi-Periodic-Frequent Patterns in Transactional Databases

Periodic-frequent patterns are an important class of user-interest-based frequent patterns that exist in a transactional database. A frequent pattern can be said periodic-frequent if it appears periodically throughout the database. We have observed that it is difficult to mine periodic-frequent patterns in very large databases. The reason is that the occurrence behavior of the patterns can vary...

متن کامل

Finding Periodic Patterns in Big Data

Periodic pattern mining is an important model in data mining. It typically involves discovering all patterns that are exhibiting either complete or partial cyclic repetitions in a dataset. The problem of finding these patterns has been widely studied in time series and (temporally ordered) transactional databases. This paper contains these studies along with their advantages and disadvantages. ...

متن کامل

An Enhanced Apriori Algorithm for Discovering Frequent Patterns with Optimal Number of Scans

Data mining is wide spreading its applications in several areas. There are different tasks in mining which provides solutions for wide variety of problems in order to discover knowledge. Among those tasks association mining plays a pivotal role for identifying frequent patterns. Among the available association mining algorithms Apriori algorithm is one of the most prevalent and dominant algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Systems and Software

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2017